CHRISTINA RIVER BASIN ### 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 39°49'00", long 75°41'31", Chester County, Hydrologic Unit 02040205, on left bank along SR 82 (Creek Road), and 3.0 mi south of the intersection of SR 82 and U.S. Highway 1 at Kennett Square. **DRAINAGE AREA**.--28.3 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1988 to current year. Discharge GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 200 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS.**--No estimated daily discharges. Records poor. Some regulation upstream of gage. Several measurements of water temperature were made during the year. Satellite telemetry at station. Discharge Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*): Gage Height | Date | Ti | me D | ft ³ /s | Gage Height
(ft) | | | Date | e Ti | | harge
t ³ /s | (ft) | | |---|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | June | 19 21 | .45 | *981 | *5.84 | | | (No | peaks | above bas | e disc | narge.) | | | | | | DISCHA | ARGE, CUBIC F | EET PER SI | | TER YEAR C
EAN VALUES | | 001 TO SEPTE | EMBER 200 |)2 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
13
12
12
12 | 14
15
14
12
13 | 12
12
12
12
12 | 15
14
13
12
12 | 24
21
18
17
16 | 15
16
133
24
18 | 30
19
19
18
17 | 25
39
26
20
19 | 17
15
15
14
14 | 17
17
17
15
14 | 7.8
7.7
8.2
7.9
9.3 | 17
14
11
9.3
8.4 | | 6
7
8
9
10 | 15
12
11
12
13 | 13
12
12
12
12 | 12
12
15
20
12 | 29
40
22
18
20 | 16
16
16
16 | 16
15
15
14
20 | 16
14
15
16
17 | 18
18
18
19 | 50
49
18
14 | 13
13
13
13
15 | 9.4
6.4
6.1
5.1
5.0 | 8.0
7.8
7.9
7.8
8.0 | | 11
12
13
14
15 | 13
14
15
14
23 | 11
11
11
12
12 | 17
17
17
23
20 | 78
30
21
18
18 | 19
16
16
15
16 | 16
16
27
27
24 | 17
19
18
17
18 | 17
19
42
30
20 | 13
14
18
58
31 | 12
12
11
15
15 | 5.2
5.1
5.0
4.7
6.9 | 7.7
11
10
7.1
7.9 | | 16
17
18
19
20 | 15
16
15
15 | 12
11
11
11
13 | 17
18
33
20
18 | 17
16
15
15
17 | 16
15
15
15
16 | 24
24
52
24
111 | 16
16
17
22
28 | 18
17
135
35
25 | 28
20
15
140
69 | 13
11
9.9
9.7 | 5.1
11
16
5.0
6.2 | 14
8.1
7.5
6.7
7.3 | | 21
22
23
24
25 | 14
15
16
16
16 | 12
11
11
11
30 | 18
17
16
34
19 | 16
17
19
59
32 | 22
16
15
15 | 43
25
20
20
19 | 15
24
18
17
24 | 22
20
19
19
19 | 22
16
14
32
43 | 8.7
9.1
8.7
13
9.8 | 5.7
6.0
6.4
10 | 5.5
5.0
5.9
6.0 | | 26
27
28
29
30
31 | 14
13
13
13
14
14 | 31
17
16
15
13 | 17
17
17
17
16
16 | 19
17
17
16
16
28 | 15
16
15
 | 20
79
25
21
19
22 | 24
20
86
31
24 | 18
19
20
18
18 | 22
29
35
20
17 | 8.9
9.9
9.8
11
8.0 | 4.6
5.1
11
131
29
10 | 19
66
39
12
12 | | TOTAL
MEAN
MAX
MIN | 438
14.1
23
11 | 411
13.7
31
11 | 535
17.3
34
12 | 696
22.5
78
12 | 464
16.6
24
15 | 944
30.5
133
14 | 652
21.7
86
14 | 788
25.4
135
17 | 876
29.2
140
13 | 372.5
12.0
17
8.0 | 371.9
12.0
131
4.6 | 362.9
12.1
66
5.0 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2002, BY WATER YEAR (WY) | | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 26.6
75.5
1997
10.8
1995 | 31.0
61.3
1997
10.9
1999 | 40.3
128
1997
12.9
1999 | 48.0
96.1
1996
22.0
1992 | 42.7
81.2
1994
16.6
2002 | 60.1
116
1994
30.5
2002 | 45.6
85.5
1993
21.7
2002 | 40.5
79.2
1989
21.7
1999 | 32.6
57.3
1996
16.0
1995 | 26.7
94.5
1989
12.0
1995 | 21.5
55.2
1996
5.84
1995 | 29.2
89.4
1999
8.83
1995 | # CHRISTINA RIVER BASIN # 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1988 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 11193.4 | 6911.3 | | | ANNUAL MEAN | 30.7 | 18.9 | 37.2 | | HIGHEST ANNUAL MEAN | | | 52.0 1997 | | LOWEST ANNUAL MEAN | | | 18.9 2002 | | HIGHEST DAILY MEAN | 454 Mar 30 | 140 Jun 19 | 1820 Sep 16 1999 | | LOWEST DAILY MEAN | 8.9 Aug 9 | 4.6 Aug 26 | 0.86 Sep 3 1995 | | ANNUAL SEVEN-DAY MINIMUM | 11 Aug 3 | 5.2 Aug 8 | 1.1 Sep 2 1995 | | MAXIMUM PEAK FLOW | | 981 Jun 19 | a 4680 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.84 Jun 19 | 10.04 Sep 16 1999 | | 10 PERCENT EXCEEDS | 54 | 29 | 59 | | 50 PERCENT EXCEEDS | 20 | 16 | 26 | | 90 PERCENT EXCEEDS | 12 | 8.0 | 12 | **a** From rating curve extended above 2,100 ft³/s. # CHRISTINA RIVER BASIN ## 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |-----------------------|--|---|---|---|---|--|---|---|--|--|---|---|--| | APR 2002
24 | 1340 | 9813 | 17 | 30 | 12.7 | 8.2 | 403 | 13.0 | 170 | 40.5 | 16.3 | 90 | 37.6 | | JUN
25 | 1420 | 9813 | 31 | 30 | 9.0 | 7.9 | 310 | 23.0 | 120 | 28.3 | 11.1 | 70 | 23.9 | | AUG 28 | 1115 | 9813 | 8.3 | 30 | 8.9 | 8.0 | 476 | 21.4 | 170 | 40.7 | 17.3 | 112 | 39.0 | | | SULFATE | | RESIDUE
TOTAL
AT 105 | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO- | ORTHO-
PHOS-
PHATE, | PHOS- | | CARBON, | OXYGEN
DEMAND,
BIO- | OXYGEN
DEMAND,
CHEM- | | Date | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRITE
TOTAL
(MG/L
AS N)
(00615) | GEN,
TOTAL
(MG/L
AS N)
(00600) | DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | | APR 2002
24
JUN | 37.8 | 312 | 28 | .040 | 4.79 | .050 | 5.2 | .309 | .350 | 3.1 | 3.3 | 1.1 | <10 | | 25
AUG | 30.2 | 246 | 18 | .170 | 2.70 | .040 | 3.3 | .174 | .250 | 7.5 | 6.8 | 2.0 | 28 | | 28 | 40.5 | 710 | 12 | <.020 | 4.56 | <.010 | 5.1 | .645 | .670 | 3.4 | 3.6 | .5 | <10 | | Date | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC DIS- SOLVED (µG/L AS AS) (01000) | ARSENIC
TOTAL
(µG/L
AS AS)
(01002) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CADMIUM WATER UNFLTRD TOTAL (µG/L AS CD) (01027) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | | APR 2002
24
JUN | 180 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 50 | 170 | <1.0 | <1.0 | | 25
AUG | 20000 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | 7.3 | 80 | 1420 | <1.0 | 2.5 | | 28 | 1000 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 30 | 150 | <1.0 | <1.0 | | | Date APR 200 24 JUN 25 | AS M
(0105 | $_{\rm C}$, TOTA $_{\rm C}$ RECO $_{\rm C}$ ERAB $_{\rm C}$ ($\mu_{\rm G}$ $_{\rm C}$ IN) AS M | L MERCU V- DIS LE SOLV /L (µG, IN) AS H | F- RECO
FED ERAB
/L (μG,
GG) AS H
(0) (7190 | L NICKEI
V- DIS-
LE SOLVI
/L (µG,
G) AS NI | RECC
ED ERAB
/L (µG
I) AS N | LL NIUM V- DIS SLE SOLV: //L (µG II) AS S: //7) (0114 | , SILVE
- DIS
ED SOLV
/L (µC
E) AS A | F RECO
ED ERAB
G/L (μα
G) AS A
5) (0107 | L ZINC
DV- DIS
BLE SOLV
G/L (μ
μ
μ
μ
μ
μ
μ
μ | - RECO
ED ERAB
G/L (μ
N) AS Z
0) (0109 | L
V-
LE
G/L
N) |